Pretty Good Democracy

Peter Y A Ryan University of Luxembourg Vanessa Teague University of Melbourne

Outline

- The challenge
- Pretty Good Democracy
- Threats
- Enhancements
- Conclusions

Where is my Vote?

"The Computer Ate my Vote"

- In the 2004 US presidential election, ~30% of the electorate used DRE, touch screen devices.
- Aside from the "thank you for your vote for Kerry, have a nice day" what assurance do they have that their vote will be accurately counted?
- What do you do if the vote recording and counting process is called into question?
- Voter Verifiable Paper Audit Trail (VVPAT) and "Mercuri method". But paper trails are not infallible either.

Remote vs Supervised

- Important to draw a clear distinction between supervised and remote voting.
- In the former the voter casts their vote in enforced isolation, e.g., in a booth in a polling station.
- Remote voting, e.g., internet, postal etc. such isolation cannot be enforced.
- Hence dangers of coercion.

Code Voting

- Distribute code sheets to voters using another, secure channel, e.g. conventional post.
- Code sheets have random voting codes and acknowledgement codes for each candidate.
- In effect each voter is provided with a personal code book to communicate with the Vote Server.
- Sidesteps many of the insecurities of the web, client devices etc.

Code sheet

Candidate	Voting code	Acknowledgment code
Asterix	4098	1385
Idefix	3990	3682
Obelix	6994	2904
Panoramix	2569	7453
Serial number	49950284926	

Voting

- Voters logs onto the Vote Server, provides her code sheet id and the vote code for her candidate.
- VS responds with the correct ack code.
- Authenticates the VS and confirms receipt of the code.
- Sidesteps many insecurities of the internet and clients but doesn't provide end-to-end verifiability.

Pretty Good Democracy

- Key ideas:
 - Access to the codes are shared amongst a set of Trustees.
 - Each code sheet carries just a single ack code.
- Thus, the Server has to pass on the correct vote code to a threshold set of the Trustees in order to return the correct ack code.
- Compatible with Prêt à Voter.

Security properties

- Receiving the correct acknowledgement code gives assurance that the vote is correctly registered on the WBB (and hence will be correctly tabulated).
- Tabulation much as in Prêt à Voter.
- Do need trust assumptions: violation of secrecy of codes can violate accuracy.
- Receipt free due to single ack code per code sheet.
- Simple voter experience: vote, check, go....

PGD Code sheet

Candidate	Voting code
Asterix	4098
Idefix	3990
Obelix	6994
Panoramix	2569
Serial number	49950284926
Acknowledgement code	4482094

Cryptographic setup

- The Voting Authority generates a table in which each row contains the voting codes for one ballot, encrypted under the Trustees threshold key PK_t.
- Table includes the ack codes encrypted under PK_t.
- For each row, the encrypted vote codes are permuted with respect to the order shown on the code sheet.
- The permutations are encoded in Prêt à Voter style onions .

The Voting Protocol

- Voter \rightarrow Server: i, VC_ij

- Server \rightarrow WBB: i, {VC_ij}_{PKt}, ZKP(VC_ij)

- Trustees check the ZKP and perform a threshold PET of {VC_ij}_{PKt} against the terms of the appropriate row.
- If a term matches it is flagged and the trustees decrypt the ack code.
- The Vote Server can then return the ack code to the voter.

Registering the vote

- PKZ and PETs posted to the WBB.
- Serves to counter attempts to alter votes or ballot stuffing etc.

Distributed construction of code sheets

- A VA generates a set of $\lambda n(c+1)$ distinct codes.
- Where n is the size of the electorate the and c number of candidates.
- λ >1 multiplier to allow for random audits.
- These are encrypted under the Trustees PK.
- Put through re-encryption mixes
- Assembled into a λn by c+1 table-P table.
- Note: generic construction.

The P table

- The k-th row of the P table:
- k, $\{VC_{i1}\}_{PKT}$, $\{VC_{i2}\}_{PKT}$,, $\{VCi_{c}\}_{PKT}$, $\{Ack_{i}\}_{PKT}$

Printing the code sheets

- Each row of the P table corresponds to a code sheet, the c+1 column is the ack code.
- A threshold set of trustees decrypt the rows and print the code sheets.
- This stage is critical.
- The Registrar distributes one code sheet to each eligible voter

The Q Table

- An initial Clerk takes the P table and, for each row performs a re-encryption and shuffle of the first c entries.
- Information defining the shuffle in encrypted under the Tellers threshold key in an onion:

Row permutations

K, $\{VC_{i1}\}_{PKTr}$, $\{VC_{i2}\}_{PKTr}$, $\{VC_{ic}\}_{PKTr}$, $\{Ack_i\}_{PKTr}$ \rightarrow K, $\{VC_{i\pi i1(1)}\}_{PKTr}$, $\{VCi_{\pi i1(c)}\}_{PKTr}$, $\{Acki\}_{PKTr, ,} \theta_{i1}$

Where $\theta_{i1} = {\pi_{i1}}_{PKTe}$

The Q Table

- Further k-1 shuffles performed:
- {VC $_{i\pi ik(1)}$ }_{PKTr}, ..., {VCi $_{\pi ik(c)}$ }_{PKTr}, {Acki} $_{PKTr}$, θ_{ik}
- The Q table in now posted to the WBB.
- Audits are performed on a randomly selected subset of the code sheets.
- Check for consistency with the corresponding rows of the Q table.

Threats

- Leaking codes: threatens accuracy but also integrity.
- VS guessing codes.
- VS submits re-encryption of posted terms.
- Voters submitting fake codes.

Recovery mechanisms

- Incorrect ack code.
- Voters should report and use alternate VS.
- Finalisation codes?

Online distribution

- Dual channel distribution.
- Visual crypto.
- Add long term secret values.
- Decryption keys via snail mail-but the crypto constructs are tricky.
- Oblivious transfer style protocol.
- Spooky voting at a distance.

Coercion resistance

- PGD not as it stands coercion resistant.
- Could add JCJ style tokens, but still tricky to see how best to update the WBB.

Discussion

- Have the voter's client perform the encryptions of the ballot index and VC.
- But then need to trust the client, to some extent.
- Almost certainly not suitable for binding political elections.
- Perhaps ok for student elections, professional bodies, e.g. The IACR.

Conclusions

- Fiendishly hard problem.
- Perhaps impossible without some residual trust.
- Not clear how to really solve the coercion problem.
- Need to figure out effective recovery mechanisms.
- Plenty of open questions.

